Cortical Learning Algorithms with Predictive Coding for a Systems-Level Cognitive Architecture

نویسندگان

  • Ryan J. McCall
  • Stan Franklin
  • R. J. MCCALL
چکیده

Human-level intelligent agents must autonomously navigate complex, dynamic, uncertain environments with bounded time and memory. This requires that they continually update a hierarchical, dynamic, probabilistic (uncertain) internal model of their current situation, via approximate Bayesian inference, incorporating both the sensory data and a generative model of its causes. Such modeling requires suitable representation at multiple levels of abstraction from the subsymbolic, sensory level to the most abstract conceptual representation. To guide our approach, we identify principles for perceptual representation, perceptual inference, and the associated learning processes. Based on these principles, a predictive coding extension to the HTM Cortical Learning Algorithms (CLA), termed PC-CLA, is proposed as a foundational building block for the systems-level LIDA cognitive architecture. PC-CLA fleshes out LIDA’s internal representations, memory, learning and attentional processes; and takes an initial step towards the comprehensive use of distributed and probabilistic (uncertain) representation throughout the architecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning in cortical networks through error back-propagation

To efficiently learn from feedback, the cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error back-propagation. It has been successfully used in both machine learning and modelling of the brain’s cognitive functions. However, in the back-propagation algorithm, ...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013